Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method
نویسندگان
چکیده
This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT) blades based on the particle swarm optimization algorithm (PSO) combined with the finite element method (FEM). The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme) flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.
منابع مشابه
Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades
A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT) blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM) theory, a structural analysis module employing the Finite Element Method (FEM) and a multi-objectiv...
متن کاملAerodynamic optimal design of wind turbine blades using genetic algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an...
متن کاملAerodynamic Optimal Design of Wind Turbine Blades using Genetic Algorithm
Wind power has been widely considered and utilized in recent years as one of the most promising renewable energy sources. In the current research study, aerodynamic analysis of the upwind three-bladed horizontal axis turbine is carried out using blade element momentum theory (BEM), and a genetic algorithm (GA) is applied as an optimization method. Output power generation is considered as an obj...
متن کاملMulti-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades
A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT) blades. In order to minimize the cost of energy (COE) and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP) combined with glass fiber reinforced plastic (GFRP) are applied...
متن کاملMulti-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method
A multi-objective optimization method for the structural design of horizontal-axis wind turbine (HAWT) blades is presented. The main goal is to minimize the weight and cost of the blade which uses glass fiber reinforced plastic (GFRP) coupled with carbon fiber reinforced plastic (CFRP) materials. The number and the location of layers in the spar cap, the width of the spar cap and the position o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012